What is NF-κB?

NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) is a protein complex that reads and copies the DNA (a transcription factor).

NF-kB is the single most important factor in causing inflammation in the body and virtually all popular herbs inhibit this protein complex (in many/most cells of the body).  Other proteins that are very popular in the literature are the cytokines TNF, IL-1, and IL-6, but NF-kB largely controls the production of these and other cytokines.

NF-κB is activated in response to stress, cytokines (like IL-1b [R] and TNF), free radicals, ultraviolet irradiation, oxidized LDL, and bacterial or viral infections,  cocaine, and ionizing radiation.  See a full list below.  With cytokines, the effect is bi-directional, as it induces cytokines and is induced by cytokines.

Oxidative stress/ROS/Free radicals is an important inducer of NF-KB.

NF-κB plays a key role in regulating the immune response to infection. Chronic activation of NF-κB has been linked to cancer, inflammatory, and autoimmune diseases.  Too little activation leads to susceptibility to viral infection and improper immune development.

NF-κB is a “rapid-acting” transcription factor, which means that it is present in cells in an inactive state and does not require new protein synthesis in order to become activated (other members of this family include transcription factors such as c-Jun, STATs, and nuclear hormone receptors). This allows NF-κB to be a first responder to harmful cellular stimuli.

Many bacterial products and stimulation of a wide variety of cell-surface receptors lead to NF-κB activation and fairly rapid changes in gene expression.  Pathogens activate NF-κB via Toll-like receptors (TLRs), which is important both innate and adaptive immune responses.

NF-kB, Health, And Performance

It’s important to realize that inflammation in one kind of cell has somewhat different effects as inflammation in another type of cell.

Activating NF-kB in the body causes inflammation and growth and this is something we want to keep to a minimum to prevent chronic disease. However, inducing NF-kB in the brain can increase intelligence by growing neurons.

So occasional spikes of inflammation in the brain can be conducive to enhanced cognitive performance.   Acutely inducing NF-kB is one of the mechanisms by which LLLT enhances our cognitive function (note that this isn’t chronic activation).

Specifically, in the brain, NF-κB is responsible for growth and development and is important for synaptic plasticity, learning, memory, synapse function, and growth of dendrites and dendritic spines.  Some products from its activation are the Brain-derived neurotrophic factor (BDNF), Nerve Growth Factor (NGF), Cytokines (TNF) and Kinases (PKAc).

One potential downside to brain induction of NF-kB is anxiety [R], as mice who are deficient in this transcription factor have reduced levels of anxiety.   This could be the underpinning of a study that showed excessive worry/anxiety coevolved with intelligence in some people [R].

High IQ was associated with a lower degree of worry, but in those diagnosed with GAD, an anxiety disorder, high IQ was associated with a greater degree of worry [R] Just a thought.

Another potential downside if activated chronically is depression [R].

Therefore, for the brain, it’s better to be activated in bursts rather than chronically.

Stress activates NF-kB [R], which is why occasional, acute bouts of stress can be extremely beneficial to cognitive enhancement, but chronic stress is harmful, as it chronically activates this protein.

Acute exercise also activates NF-kB temporarily in muscle [R] (and other parts of the body), but, again, chronic and acute activation is different.  Exercise is generally very healthy when not overdone.

The same can be said about the sun, in that it activates NF-kB acutely and a small dose of sun is great but too much is harmful.

Like the brain, the heart responds in the same way.  Acute bouts of NF-kB induction can be beneficial to the heart, especially during a heart attack, but chronic activation will cause heart disease [R].

Eating too much, which causes weight-modulation/obesity, is known to cause a lot of health problems.  Obesity and overeating activate NF-kB [R], which explains why obesity is correlated with most chronic diseases.

Activation of Nf-kB in the hypothalamus can cause insulin and leptin resistance and overeat (via ER stress), creating a vicious cycle (eating causes Nf-kB, which causes more eating, etc..) [R].

But one must realize that the body is always involved in trade-offs.  When we eat too much and become fat the body realizes this and figures we need to expend this energy by growing, increasing metabolism, etc.. To to do this, it activates NF-kB, which is a master growth regulator in the body.  This in turns allows us to get thinner and expend energy and decrease our fat storage.

Indeed, NF-kB was found to promote energy expenditure and inhibit fat tissue growth. The two effects lead to prevention of adulthood obesity and dietary obesity [R].

But of course, this growth comes from our body’s inflammatory response and increases our risk for cancer and autoimmune disease.  Hence, the tradeoff.

Diseases Associated With Chronic NF-κB Activation

This is only a partial list.  Since NF-kB induces TNF, IL-1, and IL-6, it will contribute to all of the diseases associated with these cytokines.

Not associated with Autism [R].

NF-kB Inducers

NF-kB Inhibitors

Inhibiting NF-kB promotes antigen tolerance [R], which means it can reverse some food allergies/intolerances.

All because a substance inhibits NF-kB in one type of cell in the body, it doesn’t mean it’ll inhibit it in all cells.  For example, some of these substances inhibit NF-kB in most of the body but activate it in the brain.


Most fruits and veggies will help inhibit NF-kB.

Top Supplements

Other Supplements

There’s much more that aren’t listed…

Disclaimer and Caveats

Click here to subscribe


1 Star2 Stars3 Stars4 Stars5 Stars
(14 votes, average: 4.57 out of 5)

FDA Compliance

The information on this website has not been evaluated by the Food & Drug Administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only. You must consult your doctor before acting on any content on this website, especially if you are pregnant, nursing, taking medication, or have a medical condition.