SLC2A9 Gene – The Absorptive Urate Transporter:
The SLC2A9 gene encodes the glucose transporter 9 protein (GLUT4). It transports fructose and aids in the reabsorption of filtered urate by proximal tubules in the kidney. Loss-of-function mutations in this gene can cause hereditary hypouricemia due to reduced urate absorption [1].
- RS10017674
- RS10018204
- RS1014290 – The “G” allele is associated with a lower age at onset of Parkinson’s disease [2]. Individuals with the TT genotype had higher blood uric acid levels after increasing their consumption of soft drinks [3]. The GG genotype is associated with significantly higher serum uric acid levels when compared with the TT/TG genotypes [4].
- RS1079128
- RS10805346
- RS11722228 – The “T” allele is linked to higher blood uric acid levels in females compared to males [5].
- RS12498150
- RS12498742 – Each copy of the minor “G” allele reduces the risk of gout [6].
- RS12498956
- RS13103879
- RS13129697 – The “C” allele is linked to lower blood urate levels in the Croatian population [7].
- RS13131257 – The “T” allele is associated with lower blood uric acid levels in Mexican Americans [8].
- RS13328050
- RS16868246
- RS16890979
- RS17185835
- RS17185870
- RS1850744
- RS2018643
- RS3733585 – The “G” allele is associated with cleft palate [9].
- RS3733591 – The “C” allele increases the risk of severe gout for some populations [10].
- RS3775948 – The “G” allele is associated with an increased risk of gout [11].
- RS4311316
- RS4312757
- RS4314284
- RS4339211
- RS4455410
- RS4473653
- RS4475146 – The “A” allele is associated with gout [12].
- RS4481233
- RS4519796
- RS4580649
- RS4621431
- RS6449157
- RS6449159
- RS6449171
- RS6449172
- RS6449174
- RS6449176
- RS6449178
- RS6449201
- RS6449213 – This variant is associated with higher blood urate levels [13].
- RS6814664
- RS6815001
- RS6823361
- RS6832439 – The “A” allele is associated with decreasing blood uric acid levels [14].
- RS6834893
- RS6836706
- RS6838021
- RS6839490
- RS6843873
- RS6844316
- RS6849729
- RS6852441
- RS6855911 – The “G” allele is associated with less uric acid [15].
- RS733175
- RS734553 – The “T” allele is associated with gout [16].
- RS737267 – The GG genotype is associated with 1.25 times higher risk of gout [17].
- RS7376948
- RS7378305
- RS7378340
- RS7435196
- RS7442295 – The more common “A” allele is associated with higher blood urate levels and hyperuricemia [18].
- RS7658170
- RS7671266
- RS7672947
- RS7676733
- RS7677710
- RS7680126
- RS7686538
- RS938554
- RS9993410
- RS9994266
ABCG2 Gene – The Multi-functional Transporter That Exports Urate:
The ABCG2 gene encodes a multifunctional transporter that belongs to the ATP-binding cassette family and controls the export of various compounds including urate using ATP [19].
- RS13120400
- RS1481012 – The “A” allele is associated with an increased risk of gout [12]. Heterozygous carriers of the minor allele “G” have a lower risk of colorectal cancer [20].
- RS17731538
- RS2199936 – The “A” allele is associated with incident gout [21].
- RS2231137 – The T” (minor) allele is associated with:
- Increased activity of the drug Pravastatin in patients being treated for hyperlipidemia [22].
- Increased risk of tophaceous gout [23]. This results in joint pain and arthritis.
- Possible increase in drug-induced toxicity [24].
- An increased survival rate in patients undergoing chemotherapy to treat Acute Myeloid Leukemia [25].
- Increased chance of toxic response following chemotherapy to treat Acute Myeloid Leukemia [25].
The C (major) allele is associated with:
- Higher resistance to imatinib therapy in chronic myeloid leukemia patients (CC) [26].
- RS2231142 – The T (minor) allele is associated with:
- RS2622604 – The T (minor) allele is associated with:
- Increased risk of developing myelosuppression and diarrhea in colorectal and lung cancer subjects being treated with irinotecan [30]. This is because Irinotecan can be toxic to cells if it is not removed properly.
- RS2728124
- RS2728125 – The “G” allele is associated with gout [11].
- RS3114018
- RS4148152
- RS4148155
- RS72552713 – The “A” allele is associated with an increased risk of gout [31].
SLC22A12 Gene – The Urate Transporter That Determines the Amount of Urate Present in the Blood:
The SLC22A12 gene encodes a protein that is a member of the organic anion transporter (OAT) family, and it transports urate. Found in the epithelial cells of the proximal tubule of the kidney, this protein helps control the amount of urate present in the blood. This gene is thought to be the major luminal pathway for urate reabsorption in humans and mutations have been associated with raised blood urate levels and decreased fractional urate excretion [32].
- RS12800450 – The “T” allele is associated with reduced blood urate levels [33].
- RS505802 – The “A” allele is associated with gout arthritis in Han Chinese males [34].
SLC22A11 Gene – The Organic Anion Transporter That Reabsorbs Uric Acid:
The SLC22A11 gene encodes a protein that is involved in the transport and excretion of organic anions. It also aids in the reabsorption of uric acid on the apical membrane of the proximal tubule in the kidneys [35].
- RS17300741 – The minor “G” allele is associated with lower blood uric acid levels in women [36].
SLC17A1 Gene – The Renal Urate Exporter:
The SLC17A1 gene encodes a sodium-dependent transporter that helps transport glucose and other sugars, bile salts and organic acids, metal ions and amine compounds, as well as urate. It is also associated with a higher risk of gout and hyperuricemia [37].
- RS1165196 – The allele “C” is associated with an increased risk of gout in patients with normal uric acid excretion [38]. It is also associated with a low-/high-density lipoprotein cholesterol ratio [39].
- RS1183201 – The minor “A” allele is associated with a reduced risk of gout in European and western Polynesian populations [40].
SLC17A3 Gene – Transporter That Transports Intracellular Urate Out of the Cell:
The SLC17A3 gene encodes a voltage-driven transporter that transports intracellular urate and organic anions from the blood into kidney tubule cells [41].
- RS1165205 – The “A” allele is associated with higher blood uric acid levels [42].
- RS13198474 – The “G” allele is associated with schizophrenia [43].
- RS1408272 – The “G” allele is associated with mean corpuscular hemoglobin [44].
- RS548987 The “C” is linked to homocysteine concentrations [45].
- RS6910741 – The “T” allele is associated with mean arterial pressure [46].
UMOD Gene: The Protein That Helps Control The Amount of Water in Urine:
The UMOD gene encodes uromodulin, a protein that is highly abundant in urine under physiological conditions. Defects in this gene are associated with various kidney diseases including glomerulocystic kidney disease with hyperuricemia [47].
- RS12444268 – The “A” allele linked to Type 1 Diabetes [48].
- RS12917707 – The minor “T” allele is associated with a lower risk of chronic kidney diseases [49].
- RS13333226 – The minor “G” allele is associated with a lower risk of hypertension [50].
- RS4293393 – The “T” allele is associated with kidney stones and chronic kidney disease. This SNP may also be associated with susceptibility to gout, hypertension, and diabetes [51].
HPRT1 Gene – The Enzyme That Recycles Purines:
This gene encodes hypoxanthine phosphoribosyltransferase 1, an enzyme that allows cells to recycle purines. Mutations in this gene can result in gout or Lesch-Nyhan syndrome [52].
PRPS1 Gene – The Enzyme That Helps Make Purines:
The PRPS1 gene encodes an enzyme called phosphoribosyl pyrophosphate synthetase 1, or PRPP synthetase 1. This enzyme helps produce phosphoribosyl pyrophosphate (PRPP), which is involved in making purine and pyrimidine nucleotides [53].
Uric acid levels are influenced by your genes. If you’ve gotten your genes sequenced, SelfDecode can help you determine if your levels are high or low as a result of your genes, and then pinpoint what you can do about it.
If you’re sick and tired of guessing about your health, SelfDecode can help you find specific answers that conventional doctors/diagnostics may never uncover.