Evidence Based
3.8 /5

6 Potential Health Benefits of Allulose

Written by Joe Cohen, BS | Last updated:
Medically reviewed by
Jonathan Ritter, PharmD, PhD (Pharmacology) | Written by Joe Cohen, BS | Last updated:

SelfHacked has the strictest sourcing guidelines in the health industry and we almost exclusively link to medically peer-reviewed studies, usually on PubMed. We believe that the most accurate information is found directly in the scientific source.

We are dedicated to providing the most scientifically valid, unbiased, and comprehensive information on any given topic.

Our team comprises of trained MDs, PhDs, pharmacists, qualified scientists, and certified health and wellness specialists.

Our science team goes through the strictest vetting process in the health industry and we often reject applicants who have written articles for many of the largest health websites that are deemed trustworthy. Our science team must pass long technical science tests, difficult logical reasoning and reading comprehension tests. They are continually monitored by our internal peer-review process and if we see anyone making material science errors, we don't let them write for us again.

Our goal is to not have a single piece of inaccurate information on this website. If you feel that any of our content is inaccurate, out-of-date, or otherwise questionable, please leave a comment or contact us at [email protected]

Note that each number in parentheses [1, 2, 3, etc.] is a clickable link to peer-reviewed scientific studies. A plus sign next to the number “[1+, 2+, etc...]” means that the information is found within the full scientific study rather than the abstract.

Allulose, also known as D-psicose, is a rare sugar that tastes just like white sugar, but only has 10% of its calories. It has potential anti-obesity and antidiabetic properties. Allulose may also lower the risk of heart disease, normalize eating habits, and protect the body from oxidative stress. Read on to discover 6 potential benefits of allulose and why you should incorporate it into your diet.

What is Allulose?

Allulose is a rare sugar that occurs in small quantities in nature. It belongs to a group of compounds called monosaccharides, just like fructose and glucose. However, allulose only contains 10% of the calories of these 2 sugars. It does, however, maintain a similar taste and texture.

Industrially, allulose is produced from fructose. It can be purchased as a sweetener to substitute sugar in the diet.

Due to its low-calorie content, allulose may benefit people suffering from obesity, diabetes, and may promote overall weight loss. Additionally, it may have antioxidant properties that reduce inflammation.

Natural Sources and Forms of Supplementation

Allulose occurs in small quantities in wheat and in the Itea plant family [1, 2, 3].

It is also found in brown sugar, dried figs, raisins, and worcester sauce [4].

Today, it is mostly made from bacteria and fructose and available in form of sweetener or a food additive (honey or maple syrup).


Allulose has the same molecular formula (C6H12O6) as fructose and glucose, but the placement of chemical groups is slightly different. The rearrangement of chemical groups is enough to change its physical and chemical properties.

Mechanism of Action

Allulose is quickly excreted in the urine and cannot penetrate the blood-brain barrier. Therefore, direct action on the central nervous system is not possible [5].

Allulose acts mainly through the release of GLP-1 (Glucagon-Like Peptide-1). GLP-1 is produced by the large intestine (L-cells). It circulates in the blood and binds to receptors in the brain, pancreas, gut, and kidneys [6, 7].

Allulose lowers blood glucose by [8, 9, 10, 1112] :

  • Increasing insulin release in response to an after-meal glucose spike
  • Increasing the efficiency of glucose transport into the cells
  • Increasing insulin sensitivity
  • Suppressing glucagon release
  • Increasing usage of glucose in the liver
  • Directly reducing the release of glucose into the bloodstream
  • Inhibiting intestinal alpha-glucosidase and delaying carbohydrate (sucrose in specific) digestion

Allulose decreases the amount of body fat tissue by [13, 14, 15]:

  • Increasing activity of CPT1 (Carnitine palmitoyltransferase 2), CPT2 and Beta-oxidase – enzymes responsible for the fat breakdown
  • Increasing the number of UCP1 (uncoupling protein 1) – involved in energy use in the form of heat
  • Decreasing the production of lipids (fatty acid synthase) and ACC2 (acetyl-CoA carboxylase 1)

Allulose decreases the amount of liver fat by [13]:

  • Reduction of lipid synthesis by decreasing levels of enzymes required for the reaction, FAS (fatty acid synthase), and PAP (phosphatidate phosphatase)

Allulose promotes satiety by:

  • Increasing the release of GLP-1, which travels through the bloodstream to the brain. In the brain, GLP-1 receptors are located in the brainstem, hypothalamus, and parietal cortex. It acts on receptors in these brain areas, ultimately resulting in a reduction of appetite (satiety). This leads to behavioral cut on eating [16, 14, 17].
  • GLP-1 also blocks the digestive system from emptying out food (ileal brake mechanism). This sends a signal to the brain that results in less hunger [18, 19, 20].
  • Allulose is easily absorbable but it has a very low glycemic index. This means that consuming allulose does not cause a rise in blood glucose levels [21, 11].

Health Benefits of Allulose

The health benefits of allulose have not yet been fully explored in humans. Therefore, the following list comprises all of the scientific evidence that has been conducted both clinically and preclinically on the effects of allulose.

1) May Help Control Blood Glucose and Insulin Levels

In a 12-week trial conducted on 26 diabetic patients, 5 g of allulose 3 times a day decreased post-meal glucose spike in diabetic patients [11].

In 15 prediabetic and 11 healthy patients, single ingestion of allulose reduced blood glucose levels in patients with borderline diabetes. Long-term (12 weeks) use of allulose did not cause any side effects [11].

In diabetic and healthy mice, allulose lowered general blood glucose down to normal levels without causing hypoglycemia in healthy animals. It also alleviated the post-meal glucose spike in both healthy and diabetic animals [14].

Insulin resistance is a condition in which cells fail to respond to insulin, resulting in high blood glucose levels. The main symptom of this condition is high insulin levels (hyperinsulinemia). In animals with hyperinsulinemia, allulose decreased insulin levels and lowered insulin resistance [22, 14].

2) May Prevent Weight Gain

In 121 overweight individuals, allulose significantly reduced fat in the stomach and waist. Additionally, it reduced the overall body mass index (BMI) [23].

In multiple mouse studies, allulose decreased fatty tissue in both obese and leptin-deficient mice. This effect was mediated by the release of GLP-1. Allulose use also corrected diabetes, fatty liver disease, and overeating [9, 24].

High-fat diet-fed mice supplemented with allulose demonstrated about 50% less fat in the belly area and body [13].

In mice, allulose increased the activity of enzymes responsible for the breakdown of fat (Beta-oxidase, CPT1, CPT2). It also decreased fat synthesis (fatty acid synthase) [25, 26].

In mice fed a high-fat diet (HFD), allulose for 16 weeks decreased fat synthesis and absorption in the small intestine. Additionally, it increased the removal of fats from the body (fecal excretion) [13].

In cell studies, the direct application of allulose prevented fat cells from replicating [24].

3) Allulose May Reduce Oxidative Stress and Inflammation

In rats with testicular injury, allulose-infused water (2% allulose) for 14 days prevented the production of reactive oxygen species (ROS) and prevented further injury. Additionally, allulose increased the number of antioxidant proteins (glutathione peroxidase 1 and 2, glutaredoxin 1) [27].

Type 2 diabetes is caused by a failure of B-cells in the pancreas to respond to glucose levels. In rats with type 2 diabetes, allulose for 60 weeks reduced the production of inflammatory molecules IL-6 and TNF-alpha. It also increased the production of glutathione (GSH), an antioxidant that plays a protective role in the body and helps alleviate cell damage [28].

In rats supplemented with 5% allulose solution for 12 weeks, total body weight and cholesterol levels were reduced. Additionally, allulose reduced the expression of inflammatory genes (fos, mmp3, Fgf21, and abcd2) and genes responsible for fat synthesis [29].

In a cell model of Parkinson’s disease (6-OHDA treated PC12 cells), allulose protected neurons from cell death. It also increased levels of glutathione [30].

4) Allulose May Reduce Fat Storage in the Liver

In mice fed high-fat diets, allulose for 16 weeks decreased the amount of fat buildup in the liver. Enzymes responsible for the synthesis of fat (fatty-acid synthase [FAS], acetyl-CoA carboxylase 1 [ACC1], and phosphatidate phosphatase [PAP]) had reduced activity and fat breakdown (beta-oxidation) was increased [13].

In obese mice, allulose for 5 weeks decreased the number of fats (triglycerides) in the liver [14].

5) Allulose May Decrease Levels of HbA1c

HbA1c, or glycated hemoglobin, is formed from a reaction between hemoglobin A and blood glucose. It is used as an indicator of blood glucose levels over time and is a reliable marker for diabetes [31, 32, 33].

In obese rats with type 2 diabetes, allulose decreased the level of HbA1c by maintaining normal blood sugar levels during eating and fasting [28].

6) Allulose and Metronidazole

In cells, the antibiotic metronidazole in conjunction with allulose was more efficient in stopping the growth of the protozoa (Tritrichomonas foetus) than the metronidazole alone. Allulose may prove useful in overcoming antibiotic resistance to metronidazole [34].

Side Effects & Precautions

There have been no reported side effects caused by allulose. Doses above 35 grams per day may cause gastrointestinal discomfort [35].

The lack of reported side effects may be attributed to the fact that there have been a limited number of studies in humans. Therefore, consult your doctor before starting allulose [11, 36].

Limitations and Caveats

Since most of the studies mentioned here were on animals, caution should be taken when using allulose in humans. Most of the mechanisms and results were only observed in animals.

Dosages used in human studies were lower than in animal studies. Humans were served up to about 0.2 g of allulose/kg, while animals were given 0.2 to 3.0 g of allulose per kilogram of body weight. The observed benefits in animal models may be attributed to the increased dose of allulose.

Dosage & Supplementation

The FDA recommends doses below 35 g/day in order to avoid stomach discomfort. You can use allulose in place of sugar in your everyday food and drink. For all recipes that call for a certain amount of sugar, you can substitute the same amount of allulose instead [35].

User Experience

Most users who have incorporated allulose sweetener in their diet have used it to replace sugar as a sweetener. The most common complaint is that it is expensive.

One user says that allulose contains about 70% of the sweetness of granulated sugar. Others report that it is easy to digest and dissolves well.

Users of the allulose honey state that it is indistinguishable from normal honey and is a great sugar replacement.

Buy Allulose

About the Author

Joe Cohen, BS

Joe Cohen won the genetic lottery of bad genes. As a kid, he suffered from inflammation, brain fog, fatigue, digestive problems, anxiety, depression, and other issues that were poorly understood in both conventional and alternative medicine.Frustrated by the lack of good information and tools, Joe decided to embark on a journey of self-experimentation and self-learning to improve his health--something that has since become known as “biohacking”. With thousands of experiments and pubmed articles under his belt, Joe founded SelfHacked, the resource that was missing when he needed it. SelfHacked now gets millions of monthly readers.Joe is a thriving entrepreneur, author and speaker. He is the CEO of SelfHacked, SelfDecode and LabTestAnalyzer.His mission is to help people gain access to the most up-to-date, unbiased, and science-based ways to optimize their health.
Joe has been studying health sciences for 17 years and has read over 30,000 PubMed articles. He's given consultations to over 1000 people who have sought his health advice. After completing the pre-med requirements at university, he founded SelfHacked because he wanted to make a big impact in improving global health. He's written hundreds of science posts, multiple books on improving health, and speaks at various health conferences. He's keen on building a brain-trust of top scientists who will improve the level of accuracy of health content on the web. He's also founded SelfDecode and LabTestAnalyzer, popular genetic and lab software tools to improve health.

Click here to subscribe


1 Star2 Stars3 Stars4 Stars5 Stars
(6 votes, average: 3.83 out of 5)

FDA Compliance

The information on this website has not been evaluated by the Food & Drug Administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only. You must consult your doctor before acting on any content on this website, especially if you are pregnant, nursing, taking medication, or have a medical condition.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.